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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

ANATYSIS OF EFFECTS OF AIRPLANE CHARACTERISTICS AND
AUTOPTLOT PARAMETERS ON A ROLL-COMMAND SYSTEM
WITH ATLERON RATE AND DEFLECTION LIMITING

By Albert A. Schy and Ordway B. Gates, Jr.

SUMMARY

The dynamic characteristics of an airplane with a proportional-gain
roll-control autopilot are discussed. The significant aspects of the
dynamic characteristics of the airplane are analyzed. A comparison of
three different high-speed fighter airplanes is presented. The dynamic
effects of time lags and various gains in the system are described.
Results obtained by the Reeveg Electronic Analog Computer are presented
to show the effects of limiting the aileron deflection and rate of
deflection on the dynamic characteristics of the system.

INTRODUCTION

There is much interest at the present time in the development of a
completely automatic interceptor system. Much research, both analyti-
cal and experimental, is being done toward the development of specific
systems. However, there remains a serious lack of published material
on many problems which would be of general interest to people in this
field. For this reason, the Langley stability analysis section has
undertaken an analog-simulation study of certain aspects of the attack
phase of the automatic interception problem by using accurate simulation
of airplane dynamics, attack geometry, and guldance computers.

In connection with this study, for which a large analog computer
is needed, several investigations of particular aspects of the complete
problem using appropriate approximations for simplified simulation are
being carried out. Various simplifying approximations are often feasible
when it is desired to investigate certain aspects of the attack problem
individually. One purpose of these small-scale studies is to determine
desirable characteristics for the tie-in equipment and autopilots for
use in the large-scale analog simulation mentioned above.
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A roll~command autopilot is an important component of any automat-
ically controlled interceptor, because an airplane must bank in order
to turn its flight path effectively. This paper presents the results
of a theoretical investigation of a so-called proportional-gain roll-
command autopilot. 1In this type of autopilot, the signal to the aileron
servo consists essentially of a linear combination of the error in bank,
its time derivatives and/or integrals, and various components of the
airplane motion. The proportional amount of any component which enters
into the aileron-actuating signal depends on the gain on this component.

By use of standard methods for the analysis of linear dynamic sys-
tems (see ref. 1, for example), the following aspects of the automatic
roll-command system were investigated: +he properties of the airplane
as a component of the system, the effects of the various gains on the
dynamic characteristics of the system, and the effects of time lags in
the system. Also, the nonlinear effects of limiting the amplitude and
rate of the aileron motion were investigated by use of a Reeves RElec-
tronic Analog Computer (REAC).

In order to investigate the effects of different airplane charac-
teristics on the system, results were obtained for the following four
cases: a present-day interceptor which has very little coupling between
the rolling and yaw-sideslip motions; two flight conditions of a high-
speed research airplane having relatively low roll inertia and damping,
low Dutch-roll damping, and very high ratio of roll-~to-sideslip magnitude
in the Dutch-roll mode; and an advanced-design interceptor having good
Dutch-roll damping due to a high stabilizing value of the product of
inertia.

SYMBOLS

ag, + + - 83 coefficients of numerator of roll transfer function

(see eq. (8))

Ay, « o A), coefficients of denominator of roll transfer function

(see eq. (8))

arg phase angle (argument) of a complex number, deg or radians
b span, ft

c trim-lift coefficient, Lift

L ) a5

Rolling moment
qSb

¢ rolling-moment coefficient,
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Ix/mb2
Iz/mb2

Yawing moment
gsb

yawing-moment coefficient,

Lateral force

lateral-force coefficient,
as

yaw-damper gain, sec

transfer function

airplane moment of inertia in rolling, slug—feet2
airplane moment of inertia in yawing, slug—feet2
airplane product of inertia, slug-feet2

imaginary part of a complex number

forward-loop (sensitivity) gain
roll-rate feedback gain, sec

roll-acceleration feedback gain, sec?

integrator gain, sec"l

airplane mass, slugs

Mach number

Laplace transform variable
period of oscillation, sec
dynamic pressure, slug-fee’c"l—sec‘2

real part of a complex number

wing area, 52
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time for an oscillation to damp to half-amplitude, sec

steady-~state velocity of airplane, feet-sec™t

airplane sideslip angle
airplane flight-path angle

total aileron deflection, positive in direction to give
a positive rolling moment, deg or radians

rudder deflection, positive with trailing edge to left,
deg or radiamns

error in bank angle (¢f; - ¢f), deg or radians

dimensional damping-in-roll root of airplane characteristic
equation, sec”

airplane lateral relative-density parameter, B%E

air density, slugs-f'b"5

o = K1/K, sec™t

T

¢

¢:

v

®
Subscripts:
F

L

characteristic "time lag" of a first-order lag element
in automatic pilot system, sec

airplane bank angle, deg or radians
comnand bank angle, deg or radians

airplane yaw angle, deg or radians

angular frequency, radians-sec—1

filter in autopilot
limiting value

in stability derivatives represents derivative with
respect to @b/2V

in stability derivatives represents derivative with
respect to {b/2V
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s alleron servo
58 steady state
B in stability derivatives represents derivative with

respect to B

in stability derivatives represents derivative with
respect to B,

in stability derivatives represents derivative with
respect to B8,

Square brackets around a ratio of two quantities indicate the
transfer function relating the quantities.

The stability derivatives listed in table I correspond to angular
variables in radians.

DISCUSSION OF ROLL~CONTROL SYSTEM

In these remarks and in the first part of the analysis, the non-
linear effects of limiting the amplitude and rate of aileron motion will
be neglected. This assumption should give valid results for small gains
in the autopilot system and/or small commands, because the aileron motions
may then be assumed to be relatively small so that there would be little
or no limiting action. When the linearized equations of lateral motion
are used for the airplane, the whole system is linear, and the well-known
methods for analyzing and synthesizing linear servo systems may be used.
For a discussion of these methods, see reference 1.

Basic Roll-Command System
The fundamental roll-command system may be represented by the fol-
lowing block diagram:

Servo- 8&0 Airframe

Amplifier . Q_

¢1 € KGg Bq Ba >
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The signal ¢i is considered to be a command in bank. This command is

compared with the actual bank angle, and the difference ¢ 1is amplified
and applied to actuate the aileron servomechanism. The transfer func-
tion KGg represents the amplification of the amplifier and servo and

the transfer function of the servo. The amplification X will be called
the forward-loop gain or the sensitivity gain, since it indicates the
sensitivity of the control to errors. The re.ultant aileron deflection
should cause the airplane to roll so that the angle of bank ¢ approaches
the command in bank ¢i as rapidly and as smcothly as possible. It is

assumed that the input signal is arbitrary, that is, independent of the
aircraft motions. The transient response to a step command input is
analyzed to evaluate the desirabllity of a given control system.

For convenience, the total aileron deflection &, 1is defined as

positive in the sense that would lead to a positive rolling moment; that
is, CZS is positive. With this definition, a positive error will give
a

rise to positive rolling of the airplane without requiring the considera-
tion of negative gains in the autopilot. The symbol Bao represents

the effective aileron deflection corresponding to an external rolling-
moment disturbance, positive in the same sense as B8,.

Command response of the basic system.- If it is assumed that the
aileron servo has no lags,

and the control equation is

b, - Ke = K(f; - 9) (1)

The characteristics of the command response of this simple control system
are obtained from the closed-loop transfer function

EANS _Ii[gfj__ (2)
33

Here gz is the transfer function giving the roll response of the air-
a

plane for an aileron deflection. For simplicity this will hereafter be
called the airplane transfer function. It is desired that in the steady

state [é?} = 1. For this simple system it can be seen that this can
i|ss
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a a,
a steady-state error in the command response.

only occur if [ﬁ} is infinite. When [gﬂ is finite, there is
ss ss

The open~loop transfer function for this simple system is

4]

A convenient method for choosing a desirable gain for the system is to

work with the complex plot of K[éﬂ. The inverse of the open-loop
transfer function | S/ is generally a rational function of the Laplace

operator p. The complex plot is obtained by setting p = iw and
plotting the real and imaginary parts of K[é] in the complex plane for

positive values of w. In the present case K[El ==[—é1 and is simply

¢ ¢

the inverse of the airplane transfer function. Therefore, 1t is the
rolling characteristics of the airplane itself which will determine
whether this simple control system can be satisfactory. The character-
istics of several airplanes are compared in the first part of the section
entitled "Analysis."

Regulatory response of the basic system.- In addition to the command
response of the system, the characteristics of the response to external
disturbances are important. External disturbances may be rolling-moment
disturbances on the airplane itself or "noise" disturbances on the com-
mand signal. Both the noise disturbances and the rolling moments caused
by air turbulence are randomly varying functions of time. In order to
minimize the effects of such disturbances, it is necessary to know their
statistical properties (which are assumed to be invariant with time) .

It may then be possible to apply the theories of generalized harmonic
analysis to design a filter to minimize the random disturbance effects.
These statistical problems, however, are outside the scope of this
paper and the problems connected with noise filtering are not discussed.
There will, however, be some discussion of a method of overcoming the
destabilizing effect of a filter the dynmamic characteristics of which
may be represented by a simple time lag. As mentioned in reference 2,
the rather complicated optimum filter which is obtained by application
of the theory of generalized harmonic analysis can often be replaced by
a very simple filter with little loss of effectiveness. For a simple
time-lag filter, the method of stabilization presented should be
applicable.
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Steady out-of-trim rolling moments may also occur on the airplane.
The transfer function for the response to an external rolling moment
for the simple system is obtained as follows:

g~ [L](ex - os9)

o - €

4 B

a

Equation (4) shows that the steady-state response to an external dis-

turbance 1s ¢ss =~ (Sa > , since ~ 1. Therefore, this simple
0/ss /K ilss

system has no regulatory stability. That is, as long as external dis-
turbances persist, a steady-state error will exist in the output bank
angle of the system. Some modification of the system is needed if it

is to be made self-trimming. It should be noted that the magnitude of
<Sao> is likely to be only a few degrees so that the error caused by

S5

such steady disturbances would be small, especially for large K. Never-
theless, a method of obtaining regulatory stability will be discussed.

Methods of Improving the Response of the Basic System

Usually, the command response will not be satisfactory for such a
simple control system either. However, even when the controlled air-
plane does have satisfactory rolling-response, the effect of time lags
in the servo and/or noise filter will be destabilizing so that some
modification of the system will be necessary. For linear systems, the
most logical way to approach this problem of modifying the system to
obtain desirable dynamic characteristics is to consider the basic system
as a network having certain undesirable dynamic characteristics which
are revealed in its open~loop response curve or frequency-response curves.
A "compensating network' may then be designed which, when inserted into
the system, will modify these curves in such a way as to cancel out the
undesirable characteristics. When nonlinearities enter into the system,
however, it becomes rather difficult to evaluate their effects on the
compensating network since the analysis of the nonlinear mechanics of
fairly complicated systems presents considerable difficulties.
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An alternate approach to the synthesis of a desirable system is
the proportional-gain method used in this investigation. In this method
the dynamic characteristics of the system are modified by varying the
gains on auxiliary inputs to the aileron servo. Although the approach
is different, the desired results are the same for this method as for
the compensating-network method, namely, to obtain desirable response
characteristics for the complete system. This method has the advantage
that certain of these gains have a familiar significance to the aero-
nautical engineer in that they may be interpreted as representing terms
in the linearized equations of alrplane motion. A more important advan-
tage is that, when nonlinearities enter the system, it 1s comparatively
simple to investigate empirically the effects of varying the gains on
the transient response of the nonlinear system by use of an analog com-
puter such as the REAC.

ANALYSTS

Linear Roll-Command System

Since the rolling characteristics of the airplane will determine
the characteristics of the basic roll-command system, these charac-
teristics are investigated by studying the linearized equations of
lateral airplane motion.

Effects of the roll characteristics of the airplane.- The equations
of lateral motion of an ailrplane for small perturbations from equilibrium
are

C1

n |-
<|o’

op2 1 b g be s
2Ky —¢'§Czpv¢'2“bez\7§‘lf-

vV -C Bp=C_ 8 +C
V2 ZB 15 a 1

(5)

2 . . 2
b 1 b 2p° gy _1 b . -
-EHbezvg¢ §Cnpg¢+2usz V2¢-§cnrv¢-c B = Cp By + Cp

b . .
Crf + 2mp g ¥ - V¥Cr, tan ¥ + 2, % B - Oygp = Cy (7)

The only control effects considered in these equations were the rolling
moment caused by the aileron and the yawing moment caused by the rudder.
The dot over a symbol represents differentiation with time. The transfer
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function {gé is obtained by taking the Laplace transform of these equa-
a

tions for zero initial conditions and solving for [§(p);} where p 1is
p
a

the Laplace transform variable.

The values of the parameters in these equations for the four cases
being compared are given in table I. The three airplanes chosen are
considered to be realistic high-speed designs which have certain funda-
mental differences in their roll properties. The airplane which has
very little coupling between its rolling and yaw-sideslip motions will
be called case A. The flight condition chosen is that for M = 0.9 at
an altitude of 20,000 feet, Cases B and C are for an airplane having a

very high g, in its Dutch-roll mode. Case B is for a Mach number of 0.9

and an altitude of 20,000 feet, whereas case C is for a Mach number of 1.6
and an altitude of 50,000 feet. Case C has practically no damping of the
Dutch-roll oscillation. Case D is an airplane with a large product of
inertia that tends to stabilize the Dutch-roll mode. 1In this case the

g
B
way between the very low value of case A and the very high values of
cases B and C. Figure 1 shows motions of these airplanes in response

to a sideslip disturbance of 2° and illustrates the differing character-
istics of the three airplanes.

Dutch-roll mode has damping comparable with case A and roughly half-

Some general properties of airplane roll-transfer functions.-~ Appli-
cation of the Laplace transform to the equations of motion gives the
general form of solution

jé] _ a5p5 + a2p2 + a1p + ag (8)
IR >

Sa A)_LplL + A5p3 + A2p2 + Ayp + AO

The final-value theorem for Laplace transforms, when applied to equa-
tion (8), says that the bank angle becomes infinite in the steady-state
response to a step aileron deflection. However, for 7 = 0, the coeffi-
cient aj in equation (8) vanishes, and the steady-state value of the
bank angle is finite. As mentioned in connection with equation (2),
this condition implies that there will be a steady-state error in the
command response of the basic roll-control system.

For 7y = 0, the theoretical steady value is

[¢ ) CzSa(hp,anB + CanYB) )
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This is usually a very large value since the numerator contains a term
with the relatively large factor py whereas the denominator 1s the

small factor which is closely connected with the spiral damping of the
lateral motion. For zero spiral damping, the steady-state value is the
desired infinite value. In general, the spiral mode will have some
damping, and a small steady-state error will occur in the command response
for 7 = 0. The distinction between the cases of infinite or very large
steady-state bank angle, however, has little or no physical significance.
In the first place, the validity of the linearized equations breaks down
for very large motion. Moreover, any practical maneuver is over in a
few seconds, whereas the effects of the spiral mode on the motion become
important only after a long time. It follows that the true steady state
is not as important in the maneuver as the effective steady state which
occurs a few seconds after the maneuver is initiated.

This can be seen more clearly if the frequency response obtained

from the transfer function [géw is considered. If the magnitude of this
a.

complex quantity seems to be approaghing a finite value as w approaches

zero, this value is the effective (., and the effective value of (g

is infinite. Figure 2 shows a comparison of the frequency responses

EgJ for the four cases when 7 = 0. All four curves show that gi
a a
seem to approach a finite value at the low frequencies. The sudden drop
to zero at = 0, which is caused by the spiral damping, occurs only at
the extremely low frequencies. This amplitude change is accompanied by
a 90° shift in phase. Since the break frequency 1s around w = 0.1,
which corresponds to a period of approximately 60 seconds, it is clear
that the spiral mode can have no important effect on maneuvers lasting
less than 5 or 10 seconds.

&

lated fairly simply. In equation (8), if 9y = O, then ag = 0; and

does

The approximate effective steady-state value of can be calcu-

neglecting the spiral damping gives Ag = 0, so that ZL = %i.
a 1
From the equations of motion, 5s
C
. lg
‘_?5_ ~- 2 8 (10)
Salss Czﬁ 5
Cy + 2C + —(20 K,2 - C )
1, 1Xxz g Xz n,

Equation (10) is obtained by considering only those terms which have
by, &8s a factor and yields a very good approximation. The effective
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steady-state values obtained from equation (10) for cases A, B, C, and D,
respectively, are 11.8, 21.2, 42.5, and 27.7 in units of degrees per sec-
ond per degree. TFrom figure 2, it can be seen that these values are an
excellent approximation of the effective steady-state magnitudes at low
frequencies. Some unpublished work by Leonard Sternfield of the Langley
stability analysis section has shown that this expression also gives
excellent agreement when compared with flight records of a number of
airplanes in various flight conditions.

The previous discussion has shown that the effects of spiral damping
may be ignored in considering the dynamic rolling characteristics of an
airplane for maneuvers of reasonably short duration. In fact, in order
to obtain realistic results for effective steady-state values, it is
necessary to ignore the spiral damping. In order to investigate the

effects of flight-path angle, v, the [gi] response was calculated for
a

case D with ¥ = T45°. These checked the response for 7 = O almost

perfectly for w > 0.1. Thus, the flight-path angle affects only the

true steady-state value of {gé} and has practically no effect on the
a

effective steady state nor on the rest of the airplane frequency response
except at very low frequencies. Therefore, ¥y = 0 was assumed throughout
the investigation for simplicity.

Comparison of several gimplified airplane transfer functions.- Since
the effects of 7y and the spiral mode may be neglected, it is clear that

the airplane transfer function &g% may be written in a simpler form than
a

that given by equation (8). Any further possible simplification would,
of course, be desirable, and this problem will now be discussed.

The most obvious simplification would be to assume that the yaw and

sideslip motions have very little effect upon the rolling. The roll
equation then becomes

2 ..
2b 1 b
X O - =C D = C B 11
2}.l'bxv2¢ EZpV¢ ZSaa ( )

and

(12)

b e

5 b 1
5 Ak vP 3%,

Naturally, such an expression is only valid if the effects of the Dutch-
roll mode on the rolling response are negligible. Examination of
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figure 2 shows that the Dutch-roll oscillation is actually very important
in all the cases except case A. It is the Dutch-roll oscillation which
causes the marked peak in the other three curves. Therefore, the simpli-
fied expression which is given in equation (12) would not be an accurate
simulation of the airplane rolling characteristics.

Since the oscillatory properties of the roll-command system are
undesirable, it is reasonable to assume that a yaw damper would be used.
As a limiting case, suppose there is enough yaw damping and inertia so
that the effect of the yawing on the rolling motion can be ignored.
Then the airplane transfer function becomes

(13)

b
. C 2 = -
[ ] - 263p< "oy P CYB>
®al b 2 p2 1 b
(2% vPT C‘fg)@“bﬁx v2 P -3 C1, 7 P) - C1l,

Equation (15) is the same as equation (12) for those frequencies where
the constant term CpCy in the denominator may be ignored. This term

has an important effect at the low frequencies, however, so that even
for infinite yaw damping the approximation given in equation (12) will
break down at the low frequencies. It should be noted that increasing
the roll damping Clp will improve the approximation to lower frequencies.

Equation (13) shows that equation (12) should be a fair approximation
to the airplane roll response when a large amount of yaw damping is used,
at least for frequencies around w = 1 and higher. The damping of the
Dutch-roll oscillation, however, is not the only thing which affects the

magnitude of the Dutch-roll peak in the Eg{] frequency response, as can
a,

be seen by comparing the curves for cases A and D 1n figure 2. These
two cases have approximately the same amount of Dutch-roll damping, but
the effect of the Dutch-roll mode on the response of case D is much more
important. The reason for this effect can be seen by recalling that

for the Dutch~roll mode. The numerator of the

case A has a very low ‘g

transfer function Fg] is the same as that in &gq, and it contains a

a
quadratic factor in p which is exactly the Dutch-roll quadratic which
would result if only the yaw and sideslip equations were considered.
This quadratic gives an excellent approximation to the Dutch-roll mode
when such coupling terms as the KXZ term and C term of the yawing-

Pp

moment equation are relatively unimportant. Therefore, for airplanes
whose rolling motion is little affected by yaw and sideslip motions, the
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numerator of the transfer function [g] almost vanishes when evaluated

B

for the Dutch-roll characteristic root. Similarly, in obtaining the

frequency responses Igé] or {géJ, although the denominator tends to get
al a,

small at frequencies near the Dutch~roll frequency, the numerator tends
to get small at the same time. In fact, very little error results from
simply canceling the Dutch-roll quadratic in the denominator with the
quadratic in the numerator. Canceling these quadratics and ignoring the
spiral mode results in an equivalent airplane transfer function

y2

fﬁ] ) Tt (1k)
%a 2“b<KX2 - Kkz%/K22)<p - Ar)

where A, is the dimensional damping-in-roll root. Comparison of equa-
tions (12) and (14) shows that they have the same form; that is,

Bg D - a
is replaced by an equivalent rolling inertia in equation (14), and the
damping in roll from the rolling equation only is replaced by an equiva-
lent damping in roll, as obtained from all three eqguations of motion.
For this reason, the expression in equation (12) will be called the
simplified airplane transfer function and equation (14) will be called

the equivalent transfer function.

jé} = A . The difference is that the rolling inertia in equation (12)

Figure 3 shows a comparison of the [gé] frequency responses for the
a,

complete airplane, the equivalent case, the simplified case, and for the
inclusion of an auxiliary yaw-damper of which the equation of motion for
the rudder deflection is

5. = -Cp ¥ (15)

Inasmuch as this yaw damper has no lags, the effect of varying the gain
C1 1s the same as varying the yaw-damping term in the yawing equation.

Examination of figure 3 shows that the introduction of the yaw
damper does tend to remove the Dutch-roll peak and thus yields a less
oscillatory roliing response. However, neither the equivalent nor the
simplified expression gives a good approximation for cases B, C, or D.
On the other hand, either one of these expressions does give a fair
approximation to the roll response when a yaw damper is assumed except
at the low frequencies. For case A, either method of simplifying the
airplane transfer function gives a very good approximation. There is
actually no visible difference between the equivalent and simplified
curves in this case.
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For airplanes like case A, with little coupling between the roll
and yaw-sideslip motions, there is very good cancellation of the Dutch-
roll effects in the roll transfer function, and this transfer function
may be represented by a very simple first-order expression in p, such
as in equations (12) or (14), When the coupling is more important as
in cases B, C, and D, the use of a yaw damper will tend to remove the
Dutch-roll effects, and the first-order expressions will provide a fair
simulation of the airplane response. On the basis of the cases presented
here, there seems to be no advantage to using the equivalent approxi-
mation instead of the simplified approximation.

It is interesting to note that, although case D has yaw damping as
good as case A and less ‘%j than cases B or C, it requires considerably

more yaw-damper gain to remove the Dutch-roll effects than any of the
other cases. This difficulty arises because the large value of product
of inertia in case D, which stabilizes the Dutch-roll mode, also changes
both the freguency and damping so much that the previously mentioned

cancellation of the Dutch-roll mode in gé} does not occur. Moreover,
a
the use of the yaw damper has little effect on the poor cancellation
properties which are caused by the different resonant frequencies in
the numerator and denominator of [gi . Therefore, the use of product
a

of inertia to stabilize the Dutch-roll mode has the disadvantage that
it introduces a large component of Dutch-roll oscillation into the rolling
motion. For case D, it can be shown that the amount of yaw damping
which is required to remove the Dutch-roll oscillation from the rolling
motion is actually larger than that required if Kyxy had been zero.

I3

The curves of sg—l no longer seem to approach a constant for low

{ Oa ;
values of w when the yaw damper is introduced, especially for cases B,
C, and D. This condition exists because the yaw damper also increases
the spiral damping, and the inherent damping in roll for these cases is
relatively low. It can be shown that, when the required roll damping

g1
is added in cases B, C, and D, the magnitude of E?ij once again seems
a

to approach a constant value at low frequencies.

Application of inverse open-loop analysis to compare the basic-
control-system response of the airplanes.- Although the frequency

responses [%é] give an adequate picture of the dynamic characteristics
a

of the airplane as a rolling system, it was pointed out in the section
entitled "Discussion of Roll-Control System™ that the complex plot
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of K{%} is more convenient for synthesizing a good roll-control sys-

tem. Figure 4 shows this plot for the four cases considered. The con-
trol system considered is the basic one with Gg = 1 presented previously.

g
Figure 5 shows a comparison for each case of the complex plots of K %l

for the airplane alone, the eguivalent case, and the airplane with yaw
damper.

When the standard methods of analyzing these curves (see ref. 1)
are applied, it is clear that only case A would yield a satisfactory
response when the basic control system discussed previously is used.

In particular, the great difference between the effects of the Dutch
roll on cases A and D, although both have the same Dutch-roll damping,
is evident. The undesirable large loop in the curve for case D is
caused by the Dutch-roll mode. The curves of figure 4 indicate that,
for case A, with a gain K = 0.5, the basic system should have a good
transient response to a bank command with overshoot somewhere between
1.1 and 1.3 times the command value. For case D, there is no way of
choosing a desirable gain, but K = 0.5 seems as good as any. Fig-
ure 6 shows a comparison of the transient command responses for these
two cases. This comparison clearly shows the superiority of case A
when only the basic contrcl system is used. Although this superiority
is partly due to the better damping in roll of case A, the product-of-
inertia effect is also important. This effect can be seen in figure 7,
which shows the effect of the yaw damper when a larger roll damping is
assumed in case D. The equivalent approximation is compared with the
three-degree-of-freedom representation with and without a yaw damper.
The oscillation caused by the Dutch-roll mode is considerable. If
there were no product of inertia, the use of the yaw damper would yield
a response similar to the equivalent approximation, but, with the product
of inertia, the yaw damper has much less effect in removing the
oscillation.

The airplane represented by case A has excellent characteristics
as a component of a roll command system. From the previous discussion,
the important properties seem to be high damping in roll, high Dutch-
roll damping, and little coupling between the rolling and yaw-sideslip
motions. The fact, however, that case A seems to have a very good roll
response with only the simplest type of roll-control system should not
be taken to mean that such a simple roll system would really be practi-
cal. The flight condition for case A is at a much lower altitude than
cases C or D, and it is unlikely that an airplane flying at the alti-
tudes common to present-day interceptors could have sufficient damping
in roll or Dutch-roll damping. Moreover, the destabilizing lags inher-
ent in the control and guidance systems would probably have to be com-
pensated for by stabilizing devices in the roll-control system. How-
ever, it 1s felt that the general conclusion which may be drawn is that
such an airplane would simplify the problems of the control-system
designer and possibly decrease the size and complexity of the necessary
control equipment.
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Effects of roll-rate and roll-acceleration feedbacks on the response
of a roll-command system.- The discussion of airplane rolling character-
istics has shown that by proper design of an airplane it is possible to
minimize the necessity for auxiliary automatic-stabilization in the roll-
command system. However, since it is unlikely that the desired stability
can be obtained at high speeds and altitudes, the possibility of auxil-
iary stabilizing feedbacks must be considered. Suppose that roll-rate
and roll-acceleration feedbacks are added to the basic system, as in
the following block diagram.

Airplane
Amplifier Servo
¢i——aC§}—— e — X Gg By —> %; > ¢

K'p + Kllpe

A qualitative picture of the physical effects of the various gains
in this autopilot may be obtained by neglecting the servo lag and con-
sidering the airplane transfer function to be given by an approximate
second-order expression, as in equations (12) and (14). If

il} = _._fL———, the open-lo0p response is
a|  p(p+ a)

m e

{ | - gK (16)
' (L + AK")p° + (a + AK")p

The characteristic equation of this system is
(1 + AK")p° + (a + AK")p + AK = O (17)

Equation (17) shows that the rolling characteristics of the system are
those of a simple damped oscillator. The effect of acceleration feed-
back K" 1is to introduce an increment in roll inertia; the effect of
rate feedback K' dis to introduce an increment in roll damping; and
the sensitivity gain X introduces a spring constant in roll which
does not exist in the airplane alone. The effects of varying these
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three gains on the stability of the roll-command system may therefore
be approximated by the well-known effects of varying the inertia,
damping, and spring constant of an oscillator.

Equation (17) represents the dynamics of what might be called the
roll-command mode. Actually, the airplane characteristic modes, of
which the Dutch roll is the most significant, are also present. The
effects of the Dutch roll may be minimized by adding yaw damping and
by increasing the gains in the roll-command system. For example, fig-
ure 8 shows the command responses for case D with K = 0.5, 2.0 and 10.0.
The results were obtained with a Reeves Electronic Analog Computer (REAC),

and both lz and %a are shown as functions of time. As K increases,

1 p1
the spring constant of the rolling mode increases and the relative effect
of the Dutch-roll mode decreases.

The reason that the Dutch roll has less effect at high gains can
be seen if the Dutch roll is considered as providing disturbing rolling
moments on the basic roll-command system whose characteristics are
given by equation (17). As the spring is tightened by increasing the
sensitivity gain, the motions caused by the disturbance decrease.

The significant effects of increasing the sensitivity gain on the
command response are that the speed of initial response is increased
(that is, the rise time is decreased), the initial overshoot increases,
and the frequency and number of cycles to damp to half-amplitude of the
roll oscillation increase. The motions shown for the gains K = 2.0
and X = 10.0 in figure 8 are impractical, however, since they call
for excessively large aileron deflections and velocities. TFor example,
if the command input were a 60° bank, even K = 2 would call for several
hundred degrees per second of aileron motion. This motion is far beyond
the capabilities of present servos and indicates the importance of a
nonlinear analysis which includes the effects of limiting the amplitude
and rate of aileron motion. The linear analysis is valuable chiefly
for establishing the general trend of the effects of varying the gains
but gives reliable results only for low gains and/or small disturbances.

The effect of rate feedback is to improve the damping of the roll-
command mode, and the value of K' really determines the magnitude
of K which can be used. From equation (17) it can be seen that, since
the natural damping of the airplane is generally very small for the
purposes of automatic control, the ratio K'/K determines the damping
ratio of the roll-command mode. The simple result is that increasing
the roll-rate feedback allows the use of a greater sensitivity gain.
Figure 9 shows the transient response for K = 10 and K' = 0.5 and
may be compared with figure 8(c) to show how the increased damping can
enable the use of increased sensitivity. Although it is entirely
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unrealistic to assume that the aileron motion remains linear at this
high value of sensitivity gain, it is interesting to note the relatively
low value of rate feedback which is needed to stabilize the high-gain
system according to the linear analysis. In the motions which will be
rresented later with the rate limiting included, it will be shown that
higher rate feedbacks are needed to stabilize lower gain systems. Addi-
tional effects of rate feedback in connection with the effects of servo
time lag will also be discussed later.

At first sight, it would seem advisable to use the acceleration
feedback to decrease the inertia of the rolling airplane, since it would
seem that a decrease in the effective inertia would give more rapid

response with less overshoot. In figure 10 the 5— and %ﬁ transients
1 i
are shown for case D with K = 5, K' = 0.26, and varying K". The
motions are shown for K" = O and for K" = t0.035. TIn order to appre-
clate the physical importance of this value, comparison with the value
which represents the inertia of the airplane alone is made. ¥From
equation (17), this value of K" 1is 0.049 second-2. A value of X"
of 0.035 therefore represents an increment of more than two-thirds the
natural inertia of the airplane. Comparison of the three motions shows
that for the linear system the use of negative X" does indeed improve
thie response by decreasing the effective inertia, whereas increasing
the effective inertia causes a slight slowing up of the response and a
slightly increased overshoot. However, it should be noted that the use
of negative X" calls for larger and much more rapid aileron motions
and indicates that any difficulties which might arise when the rate of
aileron motion is limited would be exaggerated by the use of negative K".
On the other hand, the use of positive K" would tend to alleviate these
difficulties, with little adverse effect on the response.

Effects of first-order time lag.- In all the previous discussions,
the effects of lags in the servo-control system have been ignored. The
effects of a so-called "simple time lag" 1in the aileron servo are
obtained by considering for the servo transfer function

Gs(p) = T (18)
s

The inverse open-loop response then becomes

1+ GS<K'p + K"p2) ,C%]

| KCg [—%J
o |
l(l + Tsp){;f% + K'p + K"pzﬁ (19)

T

= m

S
i

i
o s
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The complete transfer function for K{EJ can be easily obtained

{
by multiplying the inverse airplane-alone transfer functions shown in
figures 4 and 5 by the factor 1 + Tgp to obtain the effects of the

servo-lag and adding the terms K'p and K"pe, which affect the imag-
inary and real parts, respectively. Figure 11 shows the effects of T4
on the airplane-alone complex plots for case A, which has enough inher-
ent damping to give a satisfactory response when there are no lags, and
for case C, in which the inherent damping is insufficient. For case C,
a yaw damper with gain C] = 0.6 has been assumed in order to eliminate

the undesirable Dutch-roll effects.

The effect of the servo time lag is destabilizing. For Tg = O,

both cases are stable for any positive value of sensitivity gain. How-
ever, the inclusion of the time lag makes the complex plot approach

270° instead of 180° as ® becomes infinite, and the roll-command mode
becomes unstable for any value of X higher than the magnitude of the
abscissa at which the curve crosses the real axis in figure 1l1. As the
time lag increases, the maximum stable gain decreases. Figure 11(a)

shows that small time lags have little effect on a basically well-damped
system in the important frequency range, but larger lags are destabilizing.

In order to compensate for the destabilizing effect of the time lag,
it is reasonable to try to increase the rate feedback. Primarily, the
destabilizing effect of T appears in figure 1l as a lowering of the

ordinate at each frequency. From equation (19) it can be seen that
increasing K' will railse the ordinate at each frequency by the
amount K'e when the substitution p = iw i1is made.

Figure 12 shows the effect of varying the rate feedback for two
values of time lag. It might be noted, parenthetically, that the curve
for T = 0.03, K' = 0.1 1is very similar to the curve for Tg = 0.03

for case A in figure 11(a). The addition of a yaw damper and some roll-
rate feedback has therefore made the response of case C very similar to
the response of case A for the airplane alone. This type of result has
led some automatic-control enthusiasts to believe that the aerodynamic
stability characteristics of an automatically controlled airplane are
unimportant, since good stability characteristics can be obtained by use
of additional automatic equipment. The trouble with this approach is
that it can cause the amount of gadgetry to snowball and an attendant
increase in unproductive weight and decrease in reliability. However,
in the present investigation the engineering difficulties which might

be involved in installing various types of feedbacks and suxiliary inputs
will be ignored. The primary emphasis will be to point out what advan-
tages various types of gadgetry may provide.
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The results presented in figure 12 show that a system which has
been destabilized by a large time lag in the servo can be stabilized
by using roll-rate feedback alone. However, the type of response with
the combination of high lag and rate feedback is somewhat different
from the low-lag case. In the complex plots the chief differences are
the high peak which appears in the high~lag case and the fact that the

curve crosses the real axis at a smaller magnitude of Re{?é} than for

low time lag. Thus, the permissible sensitivity gains are kept down,
and the closed-loop frequency response for a desirable sensitivity galn
setting would exhibit a pronounced dip at frequencies somewhat below
the peak frequency and a sharper peak; thus, there is an increased rise
time and a tendency to high-frequency oscillation. From equation (19)
it can be seen that it might be desirable to include acceleration feed-
back K" when large time lags exist. The contribution of the acceler-

ation feedback -Kn@ would tend to increase the magnitude of the real
components of the complex plot. The effect would be to smooth out the
peak due to K' and also move the crossing point further out on the real
axis, so that higher gains may be used. For example, figure 13 shows

the effect of acceleration feedback corresponding to an increase of
effective inertia on the curve with the highest peak in figure 12. Com-
parison of figures 12 and 13 indicates that the combination of roll-rate
and acceleration feedbacks does a better job of canceling the effects

of high time lag and providing the same type of complex plot as was
obtained for the low-time-lag cases.

Figure 14 shows a comparison of calculated time histories of the

p

command response -— for the cases of no acceleration feedback and

i
K" = 0.05, the complex plots of which are shown in figure 12. Sensitivity
gains were chosen which would give the same peak amplitude in both fre-
quency responses. Figure 14 shows the possible advantage of using accel-
eration feedback along with the rate feedback to compensate for the time
lag. The effects of the dip and peak which occur in the frequency response
when only rate feedback is used can be seen in the transient response as
a delay in the initial rise and a high frequency oscillation. The fact
that acceleration feedback has a beneficial effect on the response of
the linear system with time lag is particularly interesting because it
will be shown later that this type of feedback is very important when
control-rate limiting exists.

In practice, modern high-performance servos have low time lags.
The value of Tg = 0.03 second was assumed for the investigation of the
effects of aileron deflection and velocity limiting which was carried
out on the REAC. The previous discussion has shown that this small time
lag has no important effect on the response characteristics when the
basic system has satisfactory damping. It would therefore seem unnecessary
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to consider. the use of rate or acceleration feedbacks to counteract

the time-lag destabilization. However, other parts of the guidance
system, such as the radar, computer, or noise filter, might easily

have time lags higher than 0.3 second. Such time lags have been shown
to have a very strong destabilizing effect on the system, and in this
case stabilizing feedbacks would be necessary. It should be noted, how-
ever, that, in order to get the results shown in the previous figures,
the feedback must be applied at a point before the part of the system

[4/5a]
1+ T4p
the airplane transfer function with servo lag included. Consider a

noise filter placed as in the following block diagram, with extra
stabilizing feedbacks fed in before the filter.

which has the time lag. For example, let G(p) = represent

Filter Amplifier Airplane-Servo

e%% s K G > ¢

K'p + K"p2l

klp + k"p2

If the filter may be represented by a simple-time-lag transfer

function of the form = ———E;——- the inverse open-loop transfer
b4
1+ TFP
function becomes
{é =L+ -er)[G'l(p) + K'p + K"p2] + K(x'p + x"p?) (20)
K

Tt has been shown that the servo time lag in G(p) can be compen-
sated for by use of K' and K", especially since the servo time lag
is small. Then the inverse transfer function of the inner loop

51
IG‘l(p) + K'p + K”ng has a complex plot very like that of the no-lag

-

system. From a comparison of equations (19) and (20), it can then be seen
that k' and k" will have the same effect in eliminating the destabi-
lization caused by the time lag Ty as K' and X" had on the desta-

bilizing effect of Tg 1n the simpler system. Therefore, the rate and
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acceleration feedback gains k' and k", which control the stabilizing
feedback which comes in before the filter, can be used to compensate
the filter-time-lag effect in exactly the same manner as K' and K"
were shown to compensate the servo time-lag effect.

Effect of error integration.- None of the systems previously dis-
cussed have an integrator in the forward loop, and, therefore, they all
have a small steady-state error in the command and regulatory responses.
If an integrator were placed in series with the amplifier, it would
introduce a destabilizing phase shift very similar to that which occurs
for the filter which has just been discussed, when the time constant of
the filter is very large. It is possible to avold this extreme destabl-
lizing effect and still retain the steady-state effects of the integrator
by placing it in parallel with the amplifier, as in the following diagram.

Amplifier aao Airplane

K Servo L___; ﬁ_

¢y -)% € Ge %a Ba > 9
Integrator

_I_{_I. K'p

D

Here Kg 1is the integrator gain.

If we define o as the ratio of the integrator gain to the sensi-
tivity gain KI/K the inverse open-loop transfer function of this

system is

P+ O

H = % 2 {Gs_l(p)[ﬁa/ﬂj + K'p} (21)

The effect of introducing the integrator is to multiply the inverse

open-loop transfer function by the factor 3 f e At high frequencies

this factor approaches unity, and the integrator has little effect. At

low frequencies the combination of the amplifier and integrator acts

like a pure integrator so that there is no steady-state error. There

is no steady-state angle of bank in response to a constant external
rolling moment either, as can be seen from the regulatory transfer function
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_Q;} _ P[b/aéj (22)

2| p+ (K'p® + Kp + K1)Gg(p) |#/34]

Therefore, the system with the integrator has regulatory stability and
zero steady-state error in command response.

However, the integrator also has some undesirable effects on the
command-response characteristics. Figure 15 shows the inverse open-
loop responses for case C with Cj = 0.6, Tg = 0.03, and X' = O, 0.1,
and 0.3 and also shows the effect of increasing o on the two cases
with roll-rate feedback. It can be seen that increasing o 1is desta-
bilizing inasmuch as increasing o tends to make the curves approach
the curve for no rate feedback. Also, the presence of the integrator
causes a 90° phase shift of the curves at frequencies near zero. This
change in phase causes the reversed curvature at low frequencies,
which causes the magnitude of the frequency response of the closed-locp
transfer function to increase rapidly from unity at very low frequencies.

The fact that the magnitude of [jé] remains considerably greater than
5 !
!
unity to very low frequencies indicates that in the transient response

@ will remain greater than ﬁi for a relatively long time. That is,
the command response will tend to overshoot and approach @1 rather
slowly.

It would seem that the relative importance of the effects of the
integrator at low frequencies can be decreased by using a higher combi-
nation of K and K'. TFigure 16 shows the effects of ¢ on calculated
transients for different combinations of K and K'. The value of K = 0.5
was chosen for K' = 0.1 1in order to give a moderate overshoot response
when o = 0. Because of the low gain and high yaw damping, the steady-
state error is somewhat over 1 percent. Inserting the integrator, with
values ¢ = 0.5 and o = 1.0, the results predicted from figure 15 may be
observed: that is, the overshoot increases, the response is slightly
more oscillatory, and the response-time is increased. For the higher
value of damping feedback K' = 0.%, the value K = 2.8 gives approxi-
mately the same overshoot as 1s obtained with the lower values of K
and K' when o= 0. When o0 = 0.5 1is introduced, the overshoot is
less than that in the low-gain case and the return is considerably more
rapid. Thus, the adverse low-frequency effects of the integrator do
seem less troublesome when higher sensitivity gain is used.

For the purpose of improving the command response, it is clear that
the integrator has a harmful effect, since it introduces an overshoot.
The integral is basically useful to eliminate bias errors, such as might
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arise from a steady disturbing rolling moment. The steady-state command
error may also be interpreted as a bias error. Since these bias errors
may theoretically be made negligible by the use of higher gains, it
would seem that the use of an integrator introduces unnecessary diffi-
culties. However, in the presence of noise the use of high gains is
known to be undesirable. The integrator, on the other hand, has the
desirable property of tending to filter the noise, and the undesirable
property of tending to saturate in the presence of certain types of
noise. This problem of deciding between the use of an integrator or
high gain is a general one which arises in the design of all linear
automatic control and guidance systems. Inasmuch as it depends basically
on the noise properties of the system, it is outside the scope of this
paper. However, the results presented in figure 16 indicate that, when
an integrator is used in a roll-control system, it may be necessary to
also use somewhat higher gains in order to decrease the overshoot and
slow return caused by the integrator. Thus, some of the desirable
properties of the integrator with respect to nolse effects may be null-
ified if it is desired to have a rapid response.

Analysis of Results, With Particular Reference
to Effects of Control Limiting

The equations of motion of the roll-control system were simulated
on the REAC by analoging the lateral equations of airplane motion,
given in equations (5), (6), and (7), together with the following aileron
control equation for the no-limiting condition

- t ..
reba = -ba + K(p1 - ) + K [ (B - plas - kop - KB (23)
Jo

The voltages corresponding to the rate of aileron motion and the aileron
deflection itself could be limited on both the positive and negative
sides. The analog of the limiting mechanism corresponded to a servo
which did not have a "wind-up" characteristic; that is, aside from the
time lag in the servo, it was assumed that the aileron came off the
limits immediately when the input voltage to the servo became less than
the limiting value.

When limits are applied to the aileron deflection and rate, the
linear differential relation given in equation (23) is replaced by a
nonlinear relationship. Therefore, the effects of the limits on the
dynamic response of the system depend directly on such things as the
relation between the magnitude of the input and the magnitudes of the
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limits, and on the relation between the magnitudes of the rate and
deflection limits. It is clear that for small enough commands the
linear response will always be obtained. Moreover, the response for
an input ¢1 with limits SaL and SaL will be exactly similar to

the response for an input kbi with limits kSaL and kéaL where k

is an arbitrary constant. This can be seen by considering that the
analog of the two problems could be made identical by a simple change

of scale factor. By thls rule, for example, the response to a command

p1 = 60° with da; = 20°, and BaL = 120° per second 1is exactly similar

to the case of f; = 30°, &g ag, = 10°, and 5aL = 60° per second. In

setting up the problems it was assumed that the command was a 60° bank
angle, and the limiting values are related to this specific command.
The motions presented for the 60° bank command were considered to be
representative of those which would be obtained in response to fairly
large bank commands with the given limits.

Figure 17 shows that, when a fairly high forward loop gain is used
in an attempt to get rapid response, even relatively high control limits
can have a considerable effect on the system response. The airplane
simulated is case A. Figure 17(a) shows the practically linear response
obtained when the control limits are set very high. The response is
rapid and well damped. Figure 17(b) shows the response for limits
SaL = 20° and BaL 120° per second. Although this rate limit is

considerably higher than the maximum rates available with present servos,
it 1s seen that the limiting causes some oscillation in the response.
Since rate feedback is generally considered the basic stabilizing feed-
back, K' was increased, and the motion shown in figure 17(c) was
obtained. This motion is seen to be considerably more stable and
generally satisfactory. However, it should be noted that there still
remains some limiting oscillation, even though the rate feedback is

now far higher than would be considered necessary from a linear analysis.

The command response in figure 18(a) shows what happens when the
same autopilot with the same limits is applied to case C. Since the
value of ¢ 1is 1/3 in this case, and the rate feedback is high, the
results presented in figure 16 indicate that a linear analysis would
predict a very well damped motion. Because of the limits, a neutrally
stable oscillation actually results. The records of 8y and By show
that this oscillation is caused by the limiting of the aileron rate.
Although the record of &g shows its limiting value rather than zero
when By 1s limiting, the true value was actually used in computing B4.
Physically, it would be expected that limiting the control rate would
be destabilizing, since control-rate limiting introduces a lag in the
control motion called for by the linear equations. TFigures 18(b) and 18(c)
show that increasing the rate feedback is not basically the best method
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of eliminating the rate-limiting oscillation. Although the oscillation
is stabilized by rate feedback, even the use of extremely high rate
feedback which slows up the response very much does not succeed in
eliminating the rate-limiting oscillation.

Figure 19 shows the results of varying the control limits. 1In
figure 19(a) the command response is shown for the same autopilot that
was used in figure 18(b) except that the rate limit is increased from
120° per second to 180° per second. The result is a considerable
improvement in the stability of the limiting oscillation because of
the decrease in the amount of lag caused by rate limiting. Although
the effects of varying the control-rate limit seem to correspond to
varying the effective lag in the roll-control system, the variation of
the control-deflection limit would seem to correspond to varying the
effective forward-loop gain. The response shown in figure 19(b) shows
the effect of changing the limits to ®a; = 10° and Ba, = 120° per

second. The motion i1s actually less oscillatory than that shown in
figure 19(a). Therefore, the undesirable oscillation caused by rate
limiting can be decreased simply by decreasing the deflection limit.
The worst condition for the stability of the rate-limiting oscillation
can be seen to be that which combines low rate limits with high deflec-
tion limits. This result is reasonable, since this condition corre-
sponds to the use of a high effective gain with a high effective lag,
both of which should be destabilizing. The stabilizing effect of lower
deflection limits has previously been shown in reference 3.

Figure 20 shows the results for the same case with a more realistic
rate limit BaL = 40° per second. Although the limit SaL = 10° now

gives neutral stability, as shown in figure 20(a), the motion may again
be stabilized by decreasing the limit to SaL = 59, as shown in fig-

ure 20(b). The method of stabilizing the limiting oscillation by lowering
the deflection limit is generally unsatisfactory, however, because this
essentially decreases the control effectiveness at large errors and slows
up the response. Although the slow-up is rather small for the airplane
in case C, probably because of the low rolling inertis of this case, it
is generally much more pronounced. Figure 21 shows the pronounced slow
up for a typical control system with case A, for example, when the
stability of the limiting oscillation is improved by decreasing the
control-deflection 1limit. Generally, the method of decreasing the
deflection limit to stabilize the limiting oscillation was found to be
inefficient, since the loss of control effectiveness caused the type

of slow-up response shown in figure 21(b).

The method of staebilizing the 1limiting oscillation which was found
to be extremely effective in all cases was the use of roll-acceleration
feedback. Figure 22(&), for example, shows the effect of acceleration
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feedback with X" = 0.1 on the neutrally stable system of figure 18(a).
The use of the acceleration feedback in every case resulted in a smooth
motion with the limiting oscillation completely suppressed. The com-
plete elimination of the sawtooth aileron oscillation which occcurred

in figure 18(a) should be noted. It was found that a relatively wide
range of acceleration-feedback gain yielded smooth responses without
appreciably slowing up the response in cases where K" = O gave a
limiting type of oscillation. However, the use of excessive acceleration
feedback, because of the very large increase in effective inertia, caused
a slower response and a sluggish oscillation. For example, figure 22(b)
shows the motion when the acceleration feedback in figure 22(a) is doubled.
It can be seen that a slow, large amplitude oscillation is developing.

The main effects of the integral gain described in the linear
analysis were basically unchanged when the runs with control limiting
were made. As shown in figures 15 and 16, the only effective method
of decreasing the overshoot arising from integral gain was found to be
the use of higher combinations of XK and K'. Also, the steady-state
command errors without the integral-gain were not found to be signifi-
cant, especially for high forward-loop gains. The integral gain might
be desirable, however, to give the system regulatory stability, that
is, a self-trimming property. TFigure 23 presents typical regulatory
responses, which show that increasing the integral gain from Xy = 1
to Kp = 5 makes the self trimming occur much more rapidly. The motions

are in response to a steady C; = 0.01, which corresponds to Bagy = 8°

for case A. From equation (4), this system (with K = 3) would have a
steady error P = 2.59, if no integral gain were used. The motions in
figure 23 show that K7 = 1 gives a rather slow correction of this

error, whereas Ki =5 gives a very rapld correction. Excessive inte~

gral gain caused an oscillatory response.

Although the presence of the control limits seems to have no criti-
cal effect on the regulatory properties of the integral gain, the inte-
gral gain can have & very strong destabilizing effect on the limiting
oscillations in command responses. This effect of increasing the inte-
gral gain is most evident when the limiting oscillation was originally
marginally stable. Figure 2k(a) shows the command response corresponding
to figure 23(a), with Kp =1, saL = 20°, and éaL = 409 per second;

and this response appears to be stable but very oscillatory. Figure 24(b)
shows the violent limiting instability which occurs when the integral
gain is increased to KI = 5. In order to verify that the instability

is not caused by K1 alone but rather by the effect of Ky on the

limiting oscillation, figure 25(a) shows the response of the same system
with high limits. The motion appears to be very stable and satisfactory.
On the other hand, figure 25(b) shows the response for Kt = O which
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resembles closely the response for Ky = 1 Thus, moderate values of

integral gain have little effect on limiting stability whereas large
values cause violent instability. It is not likely, of course, that
such high integral gains would be necessary since it is probable that
the type of regulation for steady out-of-trim moments shown in fig-

ure 23(a) would be satisfactory. The motions in figures 24 and 25 show
that the attempt to obtain rapid regulation by use of high integral gain
would greatly increase the limiting-oscillation difficulty.

The effects of time lag predicted from the linear analysis also
were basically unchanged when limiting occurred. For example, figure 26
shows that the use of rate feedback tends to stabilize the oscillation
caused by time lag, but that the combination of rate and acceleration
feedback gives better results. The motions in figure 26 are for case C
and agree with the results shown for the linear case in figures 13 and 1h.
In general, good results in stabilizing the time-lag effect for cases A
and D were obtained with rate feedback alone. The use of acceleration
feedback was probably more important in case C because of the low rela-
tive roll inertia of this case.

The destabilizing effect of increased time lag was more evident at
low gains than at high gains, as shown in figure 27 for case A. This
result seems to contradict the effect found in the linear analysis, that
high gains tend to cause oscillatory instability in the presence of time
lags. However, in figures 27(c) and 27(d) a very high value of rate
feedback is used to stabilize the rate-limiting oscillation, and this
high rate feedback counteracts the time-lag effect. In fact, when the
linear open-loop plots are drawn for the cases in figures 27(c) and 27(d),
the effect of the increased time lag is found to be small in the impor-
tant frequency range because the system is very much overdamped by the
large amount of rate feedback. Also, the small high frequency oscilla-
tion in figure 27(d) appears to be caused by the lack of acceleration
feedback.

These results again illustrate the similarity between aileron-rate
limiting and effective time lag. Although the linear analysis showed
that the destabilizing effect of time lag is primarily improved by roll-
rate feedback and that some acceleration feedback has a favorable effect,
the REAC results show that rate-limiting instability is primarily
improved by acceleration feedback and that rate feedback can also be
helpful. It would seem, therefore, that good results could be obtained
for both time-lag and rate-limiting effects with a feedback network con-
sisting of a rate gyro with lead or an angular accelerometer with lag.

The motions in figure 27 also illustrate another interesting result
which was evident in all the runs taken on the REAC. It can be seen
that the high-sensitivity cases in this figure do not have a faster rise
time than the low-sensitivity cases. The reason is obvious when the
g motion is examined. Even the low-gain case causes the aileron to
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go against the stops at its maximum rate so that no more rapid rise time
could possibly be obtained with these limits. Therefore, it would seem
desirable to use the lowest sensitivity gain (with associated auxiliary
gains) that would cause the aileron to move at maximum velocity through-
out the activating pulse for large inputs. In this case there would be
little tendency to rate-limiting instability, and the required gains
would be close to those predicted from a linear analysis. TIn this almost
linear system, the rise and response times would be practically the same
for any magnitude of command. Examples of the desirable type of control
motion for various limiting combinations are shown in figures 19(b), 21(b),
and 26(a). In these cases, a smooth, low-overshoot response is obtained
for the large command input.

However, it is obvious that this type of system would not be optimum
since it requires just as long to roll through a small angle as through
a large one (as do all linear systems). The maximum capabilities of the
system are utilized only for large commands. This objection can be partly
overcome by using higher gain combinations, which would provide the
desired nonlinear control motions for a larger range of commands, and
inhibiting the tendency to limiting oscillations by means of acceleration
feedback. Practically however, there would be limits to the use of high
gains because the use of too high an acceleration feedback eventually
causes a slow-up of the response and also because of noise difficulties
with high gains.

The above considerations, however, suggest an entirely different
approach to the control problem. It may be possible to determine the
desired motion by some approach which ignores the use of gains or feed-
backs entirely. It seems physically obvious that the control motion
needed is an aileron pulse to start the rolling and a reverse pulse to
stop the rolling when the proper angle is reached. If it is assumed
that the aileron servo is velocity-limited, it seems reasonable that the
most rapid response would be obtained if the control were moved at maxi-
mum velocity throughout the motion. The desired control motion would
then consist of two triangular pulses, very much like that shown in
figure 26(a). TFor some conditions one or both triangular pulses might
be truncated, as in figure 19(b). With this type of control motion
assumed, it is only necessary to calculate the timing parameters of
the aileron pulse as a function of input command magnitude. In an
unpublished analysis, this has actually been done by using the simpli-
fied roll transfer function. Such a system is completely nonlinear
and open-loop, although the loop could be closed after each aileron
pulse to sample the error. A more complete discussion would be out
of place in the present paper, but this brief description has been
presented for two reasons. First, it indicates that it may be possible
to use nonlinear systems which take advantage of the rate-limiting
property which is so troublesome in linear systems. Secondly, this type
of system might be used for large roll commands in conjunction with a
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linear system for small commands. By using the linear system for small
commands only, it becomes much simpler to design a high-sensitivity,
rapid-response system without getting involved in limiting difficulties.

CONCLUSIONS

The dynamic characteristics of several modern high-speed fighter
airplane configurations as automatic roll-controlled systems have been
compared. The type of autopilot investigated was a proportional-gain
autopilot that controlled the error in bank angle. It was found that
there were important differences in the dynamic characteristics of these
airplanes as roll-controlled systems. Desirable airplane~stability
characteristics were found to be high damping in roll, high Dutch-roll
damping, and little coupling between the rolling and yaw-sideslip motions.
Inclination of the principal axis to the flight path in order to stabilize
the Dutch-roll oscillation has the undesirable property that it introduces
a large component of Dutch-roll oscillation into the rolling motion.

The effect of the forward loop (or sensitivity) gain is to intro-
duce a spring-~constant type of moment which results in a characteristic
oscillation in roll. The roll-rate feedback gain stabilizes this
oscillation. Time lags in the control system are destabilizing, but
the effect of a simple time lag can be very well compensated for by the
use of a combination of rate and acceleration feedbacks.

Unless an integrator is included in the forward loop, there will
generally be small steady-state errors in both the command and regula-
tory responses. The inclusion of an integrator, however, tends to
destabilize the rolling oscillation and cause a large initial overshoot.
These effects may be decreased by simultaneously increasing the sensi-
tivity and rate-feedback gains, but some overshoot is inevitable with
a system including an integrator.

From the comparison between the results obtained on the Reeves
Electronic Analog Computer in which the deflection and rate of deflec-
tion of the ailerons were both limited and the results of linear analysis,
it seems that the deflection limit acts roughly as a limit of the forward-
loop gain in a linear system and the rate limit acts roughly as a time
lag. The rate limit introduces a tendency to neutrally stable oscilla-
tions in the system in which the allerons perform a sawtooth oscillation
at a maximum rate. The use of a small amount of acceleration feedback
was found to be very effective in eliminating this oscillation without
slowing up the response considerably. The use of rate feedback and the
decrease of the deflection limit were also found to be helpful in elim-
inating rate-limiting oscillation. The introduction of relatively high
integral gain, such as would be required to obtain rapid regulatory
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response, caused the rate-limiting oscillation to become violently
unstable. However, smaller amounts of integral gain had little effect
on the limiting oscillation.

With control limiting, the ability to obtain faster response by
increasing the sensitivity gain is limited. Moreover, large sensitivity
gains increase the tendency to limiting oscillation for large inputs.
If too large sensitivity gains are used, it is therefore necessary to
use considerably more rate feedback than would be predicted from a
linear analysis, in order to stabilize the system for large inputs.
The system then tends to be too slow in the linear range with small
inputs. The sensitivity gain should therefore not be so large as to
require (in the presence of control-rate limiting for large inputs)
considerably more rate feedback than is predicted as desirable from a
linear analysis.

Langley Aeronautical Iaboratory,
National Advisory Committee for Aeronautics,
langley Field, Va., May 17, 1955.
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TABLE TI.- MASS AND AERODYNAMTIC PARAMETERS FOR

FLIGHT CONDITIONS CONSIDERED

Case A |{Case B|Case C|Case D
Mach Number 0.9 0.9 1.6 1.4
Altitude, ft 20,000 {20,000 |50,000| 60,000
Vv, ft. sec™! 933 | 933| 1,553| 1,359
s, Tt2 288| 175! 175, kLol
b, ft 37 25 25 35.8
V/b sec~l 25.2| 37.3| 62.1| 38.0
Cy, 0.084 | 0.138| 0.184 0.%2
Hyp 30.8| 4.5 275 256
Ty, slug-ft° 7,160 | 3,230 4,240| 17,620
Iy, slug-ft2 22,900 {33,900 |37,500 {122,500
Ty, slug-ft° 41k | 8ok| 1,090 !-23,300
Cn,. -0.19} -0.65| -0.51| -0.69
Cy -0.024 | -0.17| 0.122| 0.189
cnp 0.012| 0.002|-0.017| -0.01k4
Czp -0.37 (-0.335| -0.25| ~0.275
CnB 0.15| 0.218| 0.087| 0.345
cZB -0.04 | =0.11}-0.057, =0.128
CYB -0.77| -0.87|-0.726 | -0.785
Clgg 0.086| 0.10| 0.10| 0.117
Cng,. -0.10| -0.10| ~0.10| -0.10
T1/2, sec; spiral mode 100 45 46 131
T1/ps S€C; damping-in-roll] 0.115 .19| 0.59 1.40
T1/ps S€C; Dutch-roll 1.12| 3.07 630 1.71
P, sec; Dutch-roll 1.02| 1.63| 3.14 1.5%
|6/8] _ 0.6k | 6.09| 5.77| 3.55
Argument |/B), deg 29.4 | 18.6| 24.9 2.1
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Figure 26.- Destabilizing effect of increased time lag, and improvement
through use of rate and acceleration feedbacks. Case Cwith X=1,

K1 = 0.25, and Cj = 0.3.
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(d) T4 = 0.3 sec; K = 6; K' = 1.6.

Figure 27.- Comparison of time-lag effect for lower and higher gain com-
binations. Case A with Cqp = 0.3, 83L = 209, and éaL = 120° sec-l.
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